Math Problem Statement

Find the angles between the vectors a⃗ =3–√i^−2j^+5k^ and b⃗ =2i^+3–√j^+k^

Solution

To find the angle θ\theta between two vectors a\vec{a} and b\vec{b}, we use the dot product formula:

ab=abcosθ\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta

Where:

  • ab\vec{a} \cdot \vec{b} is the dot product of a\vec{a} and b\vec{b},
  • a|\vec{a}| and b|\vec{b}| are the magnitudes of a\vec{a} and b\vec{b}, respectively,
  • θ\theta is the angle between the vectors.

Step 1: Compute the dot product ab\vec{a} \cdot \vec{b}

Given vectors: a=3i^2j^+5k^\vec{a} = \sqrt{3}\hat{i} - 2\hat{j} + 5\hat{k} b=2i^+3j^+k^\vec{b} = 2\hat{i} + \sqrt{3}\hat{j} + \hat{k}

The dot product ab\vec{a} \cdot \vec{b} is computed as: ab=(3)(2)+(2)(3)+(5)(1)\vec{a} \cdot \vec{b} = (\sqrt{3})(2) + (-2)(\sqrt{3}) + (5)(1) ab=2323+5=5\vec{a} \cdot \vec{b} = 2\sqrt{3} - 2\sqrt{3} + 5 = 5

Step 2: Compute the magnitudes a|\vec{a}| and b|\vec{b}|

Magnitude of a\vec{a}: a=(3)2+(2)2+52|\vec{a}| = \sqrt{(\sqrt{3})^2 + (-2)^2 + 5^2} a=3+4+25=32=42|\vec{a}| = \sqrt{3 + 4 + 25} = \sqrt{32} = 4\sqrt{2}

Magnitude of b\vec{b}: b=(2)2+(3)2+(1)2|\vec{b}| = \sqrt{(2)^2 + (\sqrt{3})^2 + (1)^2} b=4+3+1=8=22|\vec{b}| = \sqrt{4 + 3 + 1} = \sqrt{8} = 2\sqrt{2}

Step 3: Compute the cosine of the angle

Now, use the dot product formula to find cosθ\cos \theta: cosθ=abab=5(42)(22)=516\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \frac{5}{(4\sqrt{2})(2\sqrt{2})} = \frac{5}{16}

Step 4: Find the angle θ\theta

θ=cos1(516)\theta = \cos^{-1}\left(\frac{5}{16}\right)

So, the angle between the vectors is:

θ=cos1(516)72.54\theta = \cos^{-1}\left(\frac{5}{16}\right) \approx 72.54^\circ

Would you like more details or have any questions?


Here are 5 related questions:

  1. How can the cross product of two vectors be used to find the area of a parallelogram?
  2. What are the applications of vector dot product in physics?
  3. How do you find the projection of one vector onto another?
  4. Can the angle between two vectors ever be greater than 180°? Why or why not?
  5. How does the dot product change if one of the vectors is multiplied by a scalar?

Tip: The dot product of orthogonal vectors (perpendicular) is always zero because cos(90)=0\cos(90^\circ) = 0.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vectors
Dot Product
Cosine Rule

Formulas

Dot product formula
Cosine rule for angles

Theorems

-

Suitable Grade Level

High School