Math Problem Statement
Given that a = i+j+k, b = i-j+k and c = i+j–k, find (a x b).c:
Solution
To find , where , , and , we will proceed step-by-step:
Step 1: Compute
Given:
The cross product is determined by the following determinant:
\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix}$$ Expand this determinant: $$\mathbf{a} \times \mathbf{b} = \mathbf{i} \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}$$ Calculating each 2x2 determinant: $$\begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} = (1)(1) - (1)(-1) = 1 + 1 = 2$$ $$\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = (1)(1) - (1)(1) = 1 - 1 = 0$$ $$\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = (1)(-1) - (1)(1) = -1 - 1 = -2$$ Thus, the cross product is: $$\mathbf{a} \times \mathbf{b} = 2\mathbf{i} - 0\mathbf{j} - 2\mathbf{k} = 2\mathbf{i} - 2\mathbf{k}$$ ### Step 2: Compute $$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$ Given: $$\mathbf{c} = \mathbf{i} + \mathbf{j} - \mathbf{k}$$ Now, calculate the dot product: $$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = (2\mathbf{i} - 2\mathbf{k}) \cdot (\mathbf{i} + \mathbf{j} - \mathbf{k})$$ Compute the dot product by multiplying corresponding components: $$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = (2)(1) + (0)(1) + (-2)(-1) = 2 + 0 + 2 = 4$$ So, the correct answer is: $$\boxed{4}$$ However, none of the provided options matches this answer, so it appears the choices may have a typo. Given our solution steps, the correct value for $$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$ is indeed $$4$$.Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Vector Algebra
Cross Product
Dot Product
Formulas
Cross product formula
Dot product formula
Theorems
-
Suitable Grade Level
Advanced High School
Related Recommendation
Calculate (a x b).c using Vectors and Dot Product
Vector Algebra Problem Involving Nonplanar Vectors and Scalar Triple Product
Compute (c⃗ × b⃗ ).a⃗ - Vectors Problem Solution
Vector Triple Product: 2C · (2A × B) with Cross and Dot Product Operations
Vector Cross Product Problem: Find b Given a × c = i + j - k