Math Problem Statement

Given that a = i+j+k, b = i-j+k and c = i+j–k, find (a x b).c:

Solution

To find (a×b)c(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}, where a=i+j+k\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}, b=ij+k\mathbf{b} = \mathbf{i} - \mathbf{j} + \mathbf{k}, and c=i+jk\mathbf{c} = \mathbf{i} + \mathbf{j} - \mathbf{k}, we will proceed step-by-step:

Step 1: Compute a×b\mathbf{a} \times \mathbf{b}

Given: a=i+j+k\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k} b=ij+k\mathbf{b} = \mathbf{i} - \mathbf{j} + \mathbf{k}

The cross product a×b\mathbf{a} \times \mathbf{b} is determined by the following determinant:

\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix}$$ Expand this determinant: $$\mathbf{a} \times \mathbf{b} = \mathbf{i} \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}$$ Calculating each 2x2 determinant: $$\begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} = (1)(1) - (1)(-1) = 1 + 1 = 2$$ $$\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = (1)(1) - (1)(1) = 1 - 1 = 0$$ $$\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = (1)(-1) - (1)(1) = -1 - 1 = -2$$ Thus, the cross product is: $$\mathbf{a} \times \mathbf{b} = 2\mathbf{i} - 0\mathbf{j} - 2\mathbf{k} = 2\mathbf{i} - 2\mathbf{k}$$ ### Step 2: Compute $$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$ Given: $$\mathbf{c} = \mathbf{i} + \mathbf{j} - \mathbf{k}$$ Now, calculate the dot product: $$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = (2\mathbf{i} - 2\mathbf{k}) \cdot (\mathbf{i} + \mathbf{j} - \mathbf{k})$$ Compute the dot product by multiplying corresponding components: $$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = (2)(1) + (0)(1) + (-2)(-1) = 2 + 0 + 2 = 4$$ So, the correct answer is: $$\boxed{4}$$ However, none of the provided options matches this answer, so it appears the choices may have a typo. Given our solution steps, the correct value for $$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$ is indeed $$4$$.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Algebra
Cross Product
Dot Product

Formulas

Cross product formula
Dot product formula

Theorems

-

Suitable Grade Level

Advanced High School