Math Problem Statement

Find the area enclosed by the curve r=4(1+cos(theta))

Solution

To find the area enclosed by the polar curve r=4(1+cosθ)r = 4(1 + \cos\theta), we use the formula for the area enclosed by a polar curve:

A=12θ1θ2r2dθA = \frac{1}{2} \int_{\theta_1}^{\theta_2} r^2 \, d\theta

Step 1: Simplify the equation

The given equation is r=4(1+cosθ)r = 4(1 + \cos\theta). The square of rr is:

r2=[4(1+cosθ)]2=16(1+cosθ)2r^2 = [4(1 + \cos\theta)]^2 = 16(1 + \cos\theta)^2

Step 2: Expand (1+cosθ)2(1 + \cos\theta)^2

(1+cosθ)2=1+2cosθ+cos2θ(1 + \cos\theta)^2 = 1 + 2\cos\theta + \cos^2\theta

Substitute cos2θ=1+cos(2θ)2\cos^2\theta = \frac{1 + \cos(2\theta)}{2}:

(1+cosθ)2=1+2cosθ+1+cos(2θ)2=32+2cosθ+cos(2θ)2(1 + \cos\theta)^2 = 1 + 2\cos\theta + \frac{1 + \cos(2\theta)}{2} = \frac{3}{2} + 2\cos\theta + \frac{\cos(2\theta)}{2}

Thus: r2=16(32+2cosθ+cos(2θ)2)=24+32cosθ+8cos(2θ)r^2 = 16\left(\frac{3}{2} + 2\cos\theta + \frac{\cos(2\theta)}{2}\right) = 24 + 32\cos\theta + 8\cos(2\theta)

Step 3: Determine integration limits

Since r=4(1+cosθ)r = 4(1 + \cos\theta) is a limaçon, the curve is symmetric about the polar axis. The full curve is traced as θ\theta goes from 00 to 2π2\pi.

Step 4: Set up the integral

A=1202π(24+32cosθ+8cos(2θ))dθA = \frac{1}{2} \int_{0}^{2\pi} \left(24 + 32\cos\theta + 8\cos(2\theta)\right) d\theta

Step 5: Solve the integral

Break it into parts:

  1. 02π24dθ=24θ02π=24(2π)24(0)=48π\int_{0}^{2\pi} 24 \, d\theta = 24\theta \Big|_{0}^{2\pi} = 24(2\pi) - 24(0) = 48\pi
  2. 02π32cosθdθ=32[sinθ]02π=32(sin(2π)sin(0))=0\int_{0}^{2\pi} 32\cos\theta \, d\theta = 32[\sin\theta]_{0}^{2\pi} = 32(\sin(2\pi) - \sin(0)) = 0
  3. 02π8cos(2θ)dθ=8[sin(2θ)2]02π=80=0\int_{0}^{2\pi} 8\cos(2\theta) \, d\theta = 8\left[\frac{\sin(2\theta)}{2}\right]_{0}^{2\pi} = 8 \cdot 0 = 0

Step 6: Add results

A=12(48π+0+0)=48π2=24πA = \frac{1}{2}(48\pi + 0 + 0) = \frac{48\pi}{2} = 24\pi

Final Answer:

The area enclosed by the curve is: 24π\boxed{24\pi}

Do you want further details or have any questions?


Here are 5 related questions:

  1. How is the area formula for polar coordinates derived?
  2. What happens if the curve is not symmetric?
  3. How do you determine the limits of integration for a polar curve?
  4. What role does trigonometric identity play in polar integrals?
  5. Can this method handle curves with overlapping regions?

Tip: Always sketch the polar curve to better understand the limits of integration and symmetry!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Polar Coordinates
Integral Calculus
Trigonometric Identities

Formulas

Area enclosed by a polar curve: A = 0.5 * ∫(r^2) dθ
Trigonometric identity: cos²θ = (1 + cos(2θ))/2

Theorems

Symmetry in Polar Coordinates
Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12