Math Problem Statement

Solve

Find the arc length parameter along the given curve from the point where t = 0 by evaluating the integral s(t) = ∫₀ᵗ |r'(u)| du. Then find the length of the indicated portion of the curve r(t) = 5cos(t)i + 5sin(t)j + 9tk, where 0 ≤ t ≤ π/4.

Solution

The question involves finding the arc length parameter s(t)s(t) along a vector-valued curve r(t)\mathbf{r}(t), and evaluating the length of the indicated portion of the curve. I will break this down step by step.


Step 1: The Formula for Arc Length

The arc length of a curve r(t)\mathbf{r}(t) is given by:

s(t)=0tr(u)dus(t) = \int_{0}^{t} |\mathbf{r}'(u)| \, du

where r(t)|\mathbf{r}'(t)| is the magnitude of the derivative of r(t)\mathbf{r}(t).


Step 2: Derivative of the Curve

The given curve is: r(t)=5costi+5sintj+9tk\mathbf{r}(t) = 5 \cos t \, \mathbf{i} + 5 \sin t \, \mathbf{j} + 9t \, \mathbf{k}

Compute the derivative r(t)\mathbf{r}'(t): r(t)=ddt(5cost)i+ddt(5sint)j+ddt(9t)k\mathbf{r}'(t) = \frac{d}{dt} \left( 5 \cos t \right) \mathbf{i} + \frac{d}{dt} \left( 5 \sin t \right) \mathbf{j} + \frac{d}{dt} \left( 9t \right) \mathbf{k}

r(t)=5sinti+5costj+9k\mathbf{r}'(t) = -5 \sin t \, \mathbf{i} + 5 \cos t \, \mathbf{j} + 9 \, \mathbf{k}


Step 3: Magnitude of r(t)\mathbf{r}'(t)

The magnitude of r(t)\mathbf{r}'(t) is:

r(t)=(5sint)2+(5cost)2+92|\mathbf{r}'(t)| = \sqrt{(-5 \sin t)^2 + (5 \cos t)^2 + 9^2}

Simplify: r(t)=25sin2t+25cos2t+81|\mathbf{r}'(t)| = \sqrt{25 \sin^2 t + 25 \cos^2 t + 81}

Using the Pythagorean identity sin2t+cos2t=1\sin^2 t + \cos^2 t = 1: r(t)=25(1)+81=106|\mathbf{r}'(t)| = \sqrt{25(1) + 81} = \sqrt{106}


Step 4: Arc Length Parameter s(t)s(t)

Now, the arc length parameter is: s(t)=0tr(u)du=0t106dus(t) = \int_{0}^{t} |\mathbf{r}'(u)| \, du = \int_{0}^{t} \sqrt{106} \, du

Since 106\sqrt{106} is a constant: s(t)=1060t1du=106ts(t) = \sqrt{106} \int_{0}^{t} 1 \, du = \sqrt{106} \, t

Thus, the arc length parameter along the curve is: s(t)=106ts(t) = \sqrt{106} \, t


Step 5: Length of the Indicated Portion

The indicated portion of the curve is from t=0t = 0 to t=π4t = \frac{\pi}{4}. The length is:

L=s(π4)s(0)L = s\left(\frac{\pi}{4}\right) - s(0)

From s(t)=106ts(t) = \sqrt{106} \, t: L=106(π4)106(0)L = \sqrt{106} \left(\frac{\pi}{4}\right) - \sqrt{106} (0)

L=106π4L = \frac{\sqrt{106} \, \pi}{4}


Final Answers:

  1. The arc length parameter along the curve is: s(t)=106ts(t) = \sqrt{106} \, t

  2. The length of the indicated portion of the curve is: L=106π4L = \frac{\sqrt{106} \, \pi}{4}

Would you like a deeper explanation of any step? Let me know!


Related Questions:

  1. How do you interpret the arc length parameter geometrically?
  2. What happens if you change the limits of integration for the arc length?
  3. How does the magnitude of r(t)\mathbf{r}'(t) affect the length of the curve?
  4. Why does the Pythagorean identity simplify r(t)|\mathbf{r}'(t)| in this case?
  5. Can you compute the arc length numerically if 106\sqrt{106} is approximated?

Tip:

Always ensure to simplify expressions like sin2t+cos2t\sqrt{\sin^2 t + \cos^2 t} using trigonometric identities to save time.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Arc Length Parameterization
Integration

Formulas

Arc Length Formula: s(t) = ∫₀ᵗ |r'(u)| du
Magnitude of a Vector: |r'(t)| = √(x'(t)² + y'(t)² + z'(t)²)

Theorems

Pythagorean Identity: sin²(t) + cos²(t) = 1

Suitable Grade Level

Undergraduate (Calculus III)