Math Problem Statement

use the first three nonzero terms of the maclaurin series for sin(x^2) to approximate the following integral, without rounding at all: sin(x^2) from 0 to 0.85

Solution

To approximate the integral of sin(x2)\sin(x^2) from 00 to 0.850.85 using the first three nonzero terms of its Maclaurin series, we start with the Maclaurin series expansion for sin(x)\sin(x):

sin(x)=xx33!+x55!x77!+\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots

Substituting x2x^2 for xx gives:

sin(x2)=x2(x2)33!+(x2)55!=x2x66+x10120+\sin(x^2) = x^2 - \frac{(x^2)^3}{3!} + \frac{(x^2)^5}{5!} - \cdots = x^2 - \frac{x^6}{6} + \frac{x^{10}}{120} + \cdots

Thus, the first three nonzero terms of sin(x2)\sin(x^2) are:

sin(x2)x2x66+x10120\sin(x^2) \approx x^2 - \frac{x^6}{6} + \frac{x^{10}}{120}

Next, we approximate the integral:

00.85sin(x2)dx00.85(x2x66+x10120)dx\int_0^{0.85} \sin(x^2) \, dx \approx \int_0^{0.85} \left( x^2 - \frac{x^6}{6} + \frac{x^{10}}{120} \right) dx

Calculating each integral term separately:

  1. First term:

00.85x2dx=[x33]00.85=(0.85)33=0.6141253=0.20470833\int_0^{0.85} x^2 \, dx = \left[ \frac{x^3}{3} \right]_0^{0.85} = \frac{(0.85)^3}{3} = \frac{0.614125}{3} = 0.20470833

  1. Second term:

00.85x66dx=16[x77]00.85=16(0.85)77\int_0^{0.85} \frac{x^6}{6} \, dx = \frac{1}{6} \left[ \frac{x^7}{7} \right]_0^{0.85} = \frac{1}{6} \cdot \frac{(0.85)^7}{7} Calculating (0.85)7(0.85)^7:

(0.85)70.350843(0.85)^7 \approx 0.350843 Thus,

00.85x66dx0.350843670.350843420.00834865\int_0^{0.85} \frac{x^6}{6} \, dx \approx \frac{0.350843}{6 \cdot 7} \approx \frac{0.350843}{42} \approx 0.00834865

  1. Third term:

00.85x10120dx=1120[x1111]00.85=1120(0.85)1111\int_0^{0.85} \frac{x^{10}}{120} \, dx = \frac{1}{120} \left[ \frac{x^{11}}{11} \right]_0^{0.85} = \frac{1}{120} \cdot \frac{(0.85)^{11}}{11} Calculating (0.85)11(0.85)^{11}:

(0.85)110.297677(0.85)^{11} \approx 0.297677 Thus,

00.85x10120dx0.297677120110.29767713200.00022547\int_0^{0.85} \frac{x^{10}}{120} \, dx \approx \frac{0.297677}{120 \cdot 11} \approx \frac{0.297677}{1320} \approx 0.00022547

Now we sum these results to approximate the integral:

00.85sin(x2)dx0.204708330.00834865+0.00022547\int_0^{0.85} \sin(x^2) \, dx \approx 0.20470833 - 0.00834865 + 0.00022547 Calculating the total:

0.204708330.00834865+0.000225470.19658515\approx 0.20470833 - 0.00834865 + 0.00022547 \approx 0.19658515

Thus, the approximate value of the integral 00.85sin(x2)dx\int_0^{0.85} \sin(x^2) \, dx using the first three nonzero terms of the Maclaurin series is approximately:

0.19658515\boxed{0.19658515}

Would you like further details or explanations? Here are some related questions you might consider:

  1. How does the error in approximation relate to the number of terms used in the series?
  2. Can you derive the Maclaurin series for other trigonometric functions?
  3. What is the significance of the higher-order terms in the series expansion?
  4. How would the approximation change if the interval was larger?
  5. What numerical methods can be used to evaluate integrals more accurately?

Tip: When approximating integrals using series, consider the convergence and how many terms are necessary for the desired accuracy.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Series Expansion
Integration

Formulas

Maclaurin series for sin(x): sin(x) = x - (x^3)/3! + (x^5)/5! - ...
Substitution for Maclaurin series: sin(x^2) = x^2 - (x^6)/6 + (x^{10})/120 + ...

Theorems

Maclaurin Series Theorem
Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12