Math Problem Statement

Solve

Solve problems from a worksheet involving the Pythagorean Theorem and its converse.

Solution

Let's solve the problems step by step.


1. Length of the diagonal of the swimming pool

  • Given:
    • Length = 50 feet
    • Width = 20 feet
  • Use the Pythagorean theorem: c=a2+b2c = \sqrt{a^2 + b^2} c=502+202=2500+400=290053.9c = \sqrt{50^2 + 20^2} = \sqrt{2500 + 400} = \sqrt{2900} \approx 53.9 Answer: 53.9 feet

2. Distance between Cincinnati and San Diego

  • Cincinnati at (5,4)(5, 4), San Diego at (10,3)(-10, -3)
  • Use the distance formula: d=(x2x1)2+(y2y1)2d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} d=(105)2+(34)2=(15)2+(7)2=225+49=27416.6d = \sqrt{(-10 - 5)^2 + (-3 - 4)^2} = \sqrt{(-15)^2 + (-7)^2} = \sqrt{225 + 49} = \sqrt{274} \approx 16.6 Answer: 16.6 units

3. Check if distances form a right triangle

  • Given:
    • Katie to Ralph = 22.5 feet
    • Ralph to Juan = 58.5 feet
    • Juan to Katie = 54 feet
  • Check if the Pythagorean theorem holds: 22.52+542=?58.5222.5^2 + 54^2 \stackrel{?}{=} 58.5^2 506.25+2916=3422.25and58.52=3422.25506.25 + 2916 = 3422.25 \quad \text{and} \quad 58.5^2 = 3422.25 Yes, they form a right triangle.

4. Length of the diagonal of the picture frame

  • Given:
    • Length = 7 inches
    • Width = 5 inches
  • Use the Pythagorean theorem: c=a2+b2c = \sqrt{a^2 + b^2} c=72+52=49+25=748.6c = \sqrt{7^2 + 5^2} = \sqrt{49 + 25} = \sqrt{74} \approx 8.6 Answer: 8.6 inches

5-10. Find the distance between points

  • Use the distance formula: d=(x2x1)2+(y2y1)2d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

(5) (0,5)(0, 5) and (4,2)(-4, 2)

d=(40)2+(25)2=(4)2+(3)2=16+9=25=5d = \sqrt{(-4 - 0)^2 + (2 - 5)^2} = \sqrt{(-4)^2 + (-3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5 Answer: 5

(6) (1,9)(1, 9) and (6,3)(6, 3)

d=(61)2+(39)2=(5)2+(6)2=25+36=617.8d = \sqrt{(6 - 1)^2 + (3 - 9)^2} = \sqrt{(5)^2 + (-6)^2} = \sqrt{25 + 36} = \sqrt{61} \approx 7.8 Answer: 7.8

(7) (6,4)(-6, 4) and (2,6)(2, -6)

d=(2(6))2+(64)2=(8)2+(10)2=64+100=16412.8d = \sqrt{(2 - (-6))^2 + (-6 - 4)^2} = \sqrt{(8)^2 + (-10)^2} = \sqrt{64 + 100} = \sqrt{164} \approx 12.8 Answer: 12.8

(8) (1,7)(-1, -7) and (3,5)(-3, -5)

d=(3(1))2+(5(7))2=(2)2+(2)2=4+4=82.8d = \sqrt{(-3 - (-1))^2 + (-5 - (-7))^2} = \sqrt{(-2)^2 + (2)^2} = \sqrt{4 + 4} = \sqrt{8} \approx 2.8 Answer: 2.8

(9) (4,0)(4, 0) and (9,7)(-9, 7)

d=(94)2+(70)2=(13)2+(7)2=169+49=21814.8d = \sqrt{(-9 - 4)^2 + (7 - 0)^2} = \sqrt{(-13)^2 + (7)^2} = \sqrt{169 + 49} = \sqrt{218} \approx 14.8 Answer: 14.8

(10) (0,8)(0, -8) and (4,0)(4, 0)

d=(40)2+(0(8))2=(4)2+(8)2=16+64=808.9d = \sqrt{(4 - 0)^2 + (0 - (-8))^2} = \sqrt{(4)^2 + (8)^2} = \sqrt{16 + 64} = \sqrt{80} \approx 8.9 Answer: 8.9


11-16. Check if side lengths form a right triangle

  • Use the Pythagorean theorem: a2+b2=c2a^2 + b^2 = c^2

(11) 7,24,257, 24, 25

72+242=49+576=625,252=6257^2 + 24^2 = 49 + 576 = 625, \quad 25^2 = 625 Yes

(12) 30,40,4530, 40, 45

302+402=900+1600=2500,452=202530^2 + 40^2 = 900 + 1600 = 2500, \quad 45^2 = 2025 No

(13) 21.6,28.8,3621.6, 28.8, 36

21.62+28.82=466.56+829.44=1296,362=129621.6^2 + 28.8^2 = 466.56 + 829.44 = 1296, \quad 36^2 = 1296 Yes

(14) 10,15,1810, 15, 18

102+152=100+225=325,182=32410^2 + 15^2 = 100 + 225 = 325, \quad 18^2 = 324 No

(15) 10.5,36,5010.5, 36, 50

10.52+362=110.25+1296=1406.25,502=250010.5^2 + 36^2 = 110.25 + 1296 = 1406.25, \quad 50^2 = 2500 No

(16) 2.5,6,6.52.5, 6, 6.5

2.52+62=6.25+36=42.25,6.52=42.252.5^2 + 6^2 = 6.25 + 36 = 42.25, \quad 6.5^2 = 42.25 Yes


Let me know if you need further clarification or details!

5 Related Questions:

  1. What are the steps for verifying a right triangle with side lengths?
  2. How is the distance formula derived from the Pythagorean theorem?
  3. Why is rounding to the nearest tenth important in real-life applications?
  4. What happens if the calculated hypotenuse is slightly off due to rounding?
  5. Can we apply these formulas in three-dimensional space? How?

Tip: Always double-check your work when squaring and adding large numbers to avoid errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Pythagorean Theorem
Distance Formula
Right Triangles

Formulas

Pythagorean Theorem: c = √(a² + b²)
Distance Formula: d = √((x₂ - x₁)² + (y₂ - y₁)²)

Theorems

Pythagorean Theorem

Suitable Grade Level

Grade 8-10