Let's solve the problems step by step.
1. Length of the diagonal of the swimming pool
- Given:
- Length = 50 feet
- Width = 20 feet
- Use the Pythagorean theorem: c=a2+b2
c=502+202=2500+400=2900≈53.9
Answer: 53.9 feet
2. Distance between Cincinnati and San Diego
- Cincinnati at (5,4), San Diego at (−10,−3)
- Use the distance formula: d=(x2−x1)2+(y2−y1)2
d=(−10−5)2+(−3−4)2=(−15)2+(−7)2=225+49=274≈16.6
Answer: 16.6 units
3. Check if distances form a right triangle
- Given:
- Katie to Ralph = 22.5 feet
- Ralph to Juan = 58.5 feet
- Juan to Katie = 54 feet
- Check if the Pythagorean theorem holds:
22.52+542=?58.52
506.25+2916=3422.25and58.52=3422.25
Yes, they form a right triangle.
4. Length of the diagonal of the picture frame
- Given:
- Length = 7 inches
- Width = 5 inches
- Use the Pythagorean theorem: c=a2+b2
c=72+52=49+25=74≈8.6
Answer: 8.6 inches
5-10. Find the distance between points
- Use the distance formula: d=(x2−x1)2+(y2−y1)2
(5) (0,5) and (−4,2)
d=(−4−0)2+(2−5)2=(−4)2+(−3)2=16+9=25=5
Answer: 5
(6) (1,9) and (6,3)
d=(6−1)2+(3−9)2=(5)2+(−6)2=25+36=61≈7.8
Answer: 7.8
(7) (−6,4) and (2,−6)
d=(2−(−6))2+(−6−4)2=(8)2+(−10)2=64+100=164≈12.8
Answer: 12.8
(8) (−1,−7) and (−3,−5)
d=(−3−(−1))2+(−5−(−7))2=(−2)2+(2)2=4+4=8≈2.8
Answer: 2.8
(9) (4,0) and (−9,7)
d=(−9−4)2+(7−0)2=(−13)2+(7)2=169+49=218≈14.8
Answer: 14.8
(10) (0,−8) and (4,0)
d=(4−0)2+(0−(−8))2=(4)2+(8)2=16+64=80≈8.9
Answer: 8.9
11-16. Check if side lengths form a right triangle
- Use the Pythagorean theorem: a2+b2=c2
(11) 7,24,25
72+242=49+576=625,252=625
Yes
(12) 30,40,45
302+402=900+1600=2500,452=2025
No
(13) 21.6,28.8,36
21.62+28.82=466.56+829.44=1296,362=1296
Yes
(14) 10,15,18
102+152=100+225=325,182=324
No
(15) 10.5,36,50
10.52+362=110.25+1296=1406.25,502=2500
No
(16) 2.5,6,6.5
2.52+62=6.25+36=42.25,6.52=42.25
Yes
Let me know if you need further clarification or details!
5 Related Questions:
- What are the steps for verifying a right triangle with side lengths?
- How is the distance formula derived from the Pythagorean theorem?
- Why is rounding to the nearest tenth important in real-life applications?
- What happens if the calculated hypotenuse is slightly off due to rounding?
- Can we apply these formulas in three-dimensional space? How?
Tip: Always double-check your work when squaring and adding large numbers to avoid errors.