Math Problem Statement

Determine another angle that has the same trigonometric ratio as each given angle. Draw a sketch with both angles labeled. a) cos 45° b) sin 150° c) tan 300° d) sin 100° e) cos 230° f) tan 350°

Solution

To solve this problem, we need to identify another angle with the same trigonometric ratio for each given angle. Here’s the detailed explanation for each part:

Step-by-step solution:

  1. a) cos45\cos 45^\circ:

    • The cosine function is positive in Quadrants I and IV.
    • cos45=cos(36045)=cos315\cos 45^\circ = \cos (360^\circ - 45^\circ) = \cos 315^\circ.
    • Therefore, another angle is 315\mathbf{315^\circ}.
  2. b) sin150\sin 150^\circ:

    • The sine function is positive in Quadrants I and II.
    • sin150=sin(180150)=sin30\sin 150^\circ = \sin (180^\circ - 150^\circ) = \sin 30^\circ.
    • Therefore, another angle is 30\mathbf{30^\circ}.
  3. c) tan300\tan 300^\circ:

    • The tangent function is positive in Quadrants I and III.
    • tan300=tan(300180)=tan120\tan 300^\circ = \tan (300^\circ - 180^\circ) = \tan 120^\circ, but tangent is negative there.
    • Using ( \tan (360^\circ - 300^\circ) = }, same

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angles and Quadrants
Trigonometric Ratios

Formulas

cos(360° - θ) = cos(θ)
sin(180° - θ) = sin(θ)
tan(θ ± 180°) = tan(θ)

Theorems

Trigonometric Function Symmetry
Quadrant Rules for Trigonometric Ratios

Suitable Grade Level

Grades 10-12