Math Problem Statement

The image contains algebraic problems involving simplification, multiplication, expansion, and factorization.

Solution

The image contains a series of algebraic problems. I will extract and solve each question step by step.


Soru 2: Simplify the given algebraic expressions.

a) 6x+4x6x + 4x

6x+4x=10x6x + 4x = 10x

b) 4x22x+7x4x^2 - 2x + 7x

4x22x+7x=4x2+5x4x^2 - 2x + 7x = 4x^2 + 5x

c) 5a28a25a^2 - 8a^2

5a28a2=3a25a^2 - 8a^2 = -3a^2

d) (x+9)(3x+6)(x + 9) - (3x + 6)

(x+9)(3x+6)=x+93x6=2x+3(x + 9) - (3x + 6) = x + 9 - 3x - 6 = -2x + 3

e) 3x25xy+6+3xy103x^2 - 5xy + 6 + 3xy - 10

3x25xy+6+3xy10=3x22xy43x^2 - 5xy + 6 + 3xy - 10 = 3x^2 - 2xy - 4

f) 9x(y+2)9x \cdot (y + 2)

This is not simplification but distribution: 9x(y+2)=9xy+18x9x \cdot (y + 2) = 9xy + 18x


Soru 3: Perform the multiplications.

a) 4(3x2)4 \cdot (3x - 2)

4(3x2)=12x84 \cdot (3x - 2) = 12x - 8

b) 2(5a+6)2 \cdot (5a + 6)

2(5a+6)=10a+122 \cdot (5a + 6) = 10a + 12

c) 3a(2a+5)-3a \cdot (2a + 5)

3a(2a+5)=6a215a-3a \cdot (2a + 5) = -6a^2 - 15a

d) (4y3)2y(4y - 3) \cdot 2y

(4y3)2y=8y26y(4y - 3) \cdot 2y = 8y^2 - 6y

e) 2k(4k5k2)-2k \cdot (4k - 5k^2)

2k(4k5k2)=8k2+10k3-2k \cdot (4k - 5k^2) = -8k^2 + 10k^3

f) (x+1)(2x+2)(x + 1) \cdot (2x + 2)

(x+1)(2x+2)=2x2+2x+2x+2=2x2+4x+2(x + 1) \cdot (2x + 2) = 2x^2 + 2x + 2x + 2 = 2x^2 + 4x + 2


Soru 4: Find the expansions.

a) (x+3)2(x + 3)^2

(x+3)2=x2+6x+9(x + 3)^2 = x^2 + 6x + 9

b) (2a4)2(2a - 4)^2

(2a4)2=4a216a+16(2a - 4)^2 = 4a^2 - 16a + 16

c) (x2)2(x - 2)^2

(x2)2=x24x+4(x - 2)^2 = x^2 - 4x + 4

g) x24x^2 - 4

This is a difference of squares: x24=(x2)(x+2)x^2 - 4 = (x - 2)(x + 2)

h) a21a^2 - 1

This is a difference of squares: a21=(a1)(a+1)a^2 - 1 = (a - 1)(a + 1)

i) 36a216b236a^2 - 16b^2

This is a difference of squares: 36a216b2=(6a4b)(6a+4b)36a^2 - 16b^2 = (6a - 4b)(6a + 4b)


Soru 5: Factorize the expressions.

a) 2x+62x + 6

2x+6=2(x+3)2x + 6 = 2(x + 3)

b) 6a+126a + 12

6a+12=6(a+2)6a + 12 = 6(a + 2)

c) 4m144m - 14

4m14=2(2m7)4m - 14 = 2(2m - 7)

i) x(x+1)+y(x+1)x \cdot (x + 1) + y \cdot (x + 1)

Factorize (x+1)(x + 1): x(x+1)+y(x+1)=(x+1)(x+y)x \cdot (x + 1) + y \cdot (x + 1) = (x + 1)(x + y)

j) a(x2)b(x2)a \cdot (x - 2) - b \cdot (x - 2)

Factorize (x2)(x - 2): a(x2)b(x2)=(x2)(ab)a \cdot (x - 2) - b \cdot (x - 2) = (x - 2)(a - b)

k) 3(a5)+x(5a)3 \cdot (a - 5) + x \cdot (5 - a)

Simplify and factorize: 3(a5)+x(5a)=3(a5)x(a5)=(a5)(3x)3 \cdot (a - 5) + x \cdot (5 - a) = 3(a - 5) - x(a - 5) = (a - 5)(3 - x)


Would you like any part of this explanation expanded?
Here are 5 related questions for practice:

  1. How do you simplify an algebraic expression with multiple variables?
  2. Can you provide the general formula for expanding (a+b)2(a + b)^2?
  3. How do you recognize and factorize a difference of squares?
  4. What steps are involved in distributing a single term into parentheses?
  5. How do you factorize expressions with multiple common factors?

Tip: When expanding or factorizing, always double-check your terms to avoid sign errors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Simplification
Multiplication
Expansion
Factorization
Algebraic expressions

Formulas

Distributive property: a(b + c) = ab + ac
Square of a binomial: (a + b)^2 = a^2 + 2ab + b^2
Difference of squares: a^2 - b^2 = (a - b)(a + b)

Theorems

Distributive Property
Difference of Squares
Square of a Binomial

Suitable Grade Level

Grades 8-10