Math Problem Statement

Find the values for the function f(x) 3 multiplied by the absolute value of (3x-2) the with transformations of f(a+h); -f(a), f(-a)

Solution

We are given a function f(x)=33x2f(x) = 3|3x - 2|, and we are asked to find the values of the function under the following transformations: f(a+h)f(a+h), f(a)-f(a), and f(a)f(-a).

1. f(a+h)f(a+h)

For this transformation, substitute a+ha+h into the original function in place of xx:

f(a+h)=33(a+h)2f(a+h) = 3|3(a+h) - 2|

Now simplify the expression:

f(a+h)=33a+3h2f(a+h) = 3|3a + 3h - 2|

2. f(a)-f(a)

For this transformation, we take the negative of f(a)f(a). Start by substituting aa into the original function:

f(a)=33a2f(a) = 3|3a - 2|

Then, apply the negative:

f(a)=33a2-f(a) = -3|3a - 2|

3. f(a)f(-a)

For this transformation, substitute a-a into the original function in place of xx:

[ f(-a) = 3|3(-a) - 2|

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Absolute Value Functions
Function Transformations
Algebra

Formulas

f(x) = 3|3x - 2|
f(a+h) = 3|3(a+h) - 2|
-f(a) = -3|3a - 2|
f(-a) = 3|3(-a) - 2|

Theorems

-

Suitable Grade Level

Grades 9-11