Math Problem Statement

Find the absolute maximum and absolute minimum values of f on the given interval. f(x) = e^−x − e^−9x, [0, 1]

Solution

To find the absolute maximum and minimum values of the function f(x)=exe9xf(x) = e^{-x} - e^{-9x} on the interval [0,1][0, 1], we will follow these steps:

Step 1: Find the critical points

  1. Compute the derivative of f(x)f(x): f(x)=ex(1)+9e9x(1)=ex+9e9x.f'(x) = -e^{-x} \cdot (-1) + 9e^{-9x} \cdot (-1) = -e^{-x} + 9e^{-9x}. Simplifying, we get: f(x)=ex+9e9x.f'(x) = -e^{-x} + 9e^{-9x}.

  2. Set f(x)=0f'(x) = 0 to find critical points: ex+9e9x=0    ex=9e9x.-e^{-x} + 9e^{-9x} = 0 \implies e^{-x} = 9e^{-9x}.

  3. Solve for xx: Take the natural logarithm of both sides: x=9x+ln(9).-x = -9x + \ln(9). Simplify to get: 8x=ln(9)    x=ln(9)8.8x = \ln(9) \implies x = \frac{\ln(9)}{8}.

    Since ln(9)2.197\ln(9) \approx 2.197, we find: x2.19780.2746.x \approx \frac{2.197}{8} \approx 0.2746.

Step 2: Evaluate ff at critical points and endpoints

We need to find f(x)f(x) at x=0x = 0, x=1x = 1, and x0.2746x \approx 0.2746.

  1. Evaluate f(0)f(0): f(0)=e0e90=11=0.f(0) = e^{-0} - e^{-9 \cdot 0} = 1 - 1 = 0.

  2. Evaluate f(1)f(1): f(1)=e1e90.36790.00012340.3678.f(1) = e^{-1} - e^{-9} \approx 0.3679 - 0.0001234 \approx 0.3678.

  3. Evaluate f(ln(9)8)f\left(\frac{\ln(9)}{8}\right): f(ln(9)8)=eln(9)8e9ln(9)8.f\left(\frac{\ln(9)}{8}\right) = e^{-\frac{\ln(9)}{8}} - e^{-9 \cdot \frac{\ln(9)}{8}}. Simplifying this, we get: f(ln(9)8)=918998.f\left(\frac{\ln(9)}{8}\right) = 9^{-\frac{1}{8}} - 9^{-\frac{9}{8}}. Using 9180.79379^{-\frac{1}{8}} \approx 0.7937 and 9980.11229^{-\frac{9}{8}} \approx 0.1122: f(ln(9)8)0.79370.1122=0.6815.f\left(\frac{\ln(9)}{8}\right) \approx 0.7937 - 0.1122 = 0.6815.

Step 3: Identify the absolute maximum and minimum values

From the evaluations above:

  • f(0)=0f(0) = 0
  • f(1)0.3678f(1) \approx 0.3678
  • f(ln(9)8)0.6815f\left(\frac{\ln(9)}{8}\right) \approx 0.6815

Conclusion:

  • Absolute maximum: f(ln(9)8)0.6815f\left(\frac{\ln(9)}{8}\right) \approx 0.6815 at x0.2746x \approx 0.2746.
  • Absolute minimum: f(0)=0f(0) = 0 at x=0x = 0.

Would you like more details or have any questions on this process?

Related Questions:

  1. How do you find critical points for a function?
  2. Why do we evaluate f(x)f(x) at endpoints when finding absolute extrema?
  3. What is the significance of the derivative being zero at a point?
  4. How can logarithms help in solving equations like ex=9e9xe^{-x} = 9e^{-9x}?
  5. What does exe^{-x} represent, and why does it decay as xx increases?

Tip:

For functions involving exponentials like exe^{-x}, always consider taking the natural logarithm when equating expressions. It can simplify calculations significantly!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Derivative
Exponential Functions
Critical Points
Extrema

Formulas

f'(x) = -e^{-x} + 9e^{-9x}
e^{-x} = 9e^{-9x}
x = ln(9) / 8
f(x) = e^{-x} - e^{-9x}

Theorems

First Derivative Test
Logarithmic Properties

Suitable Grade Level

Grades 11-12, College Calculus